Causal Inference for Earth System Sciences - Jakob Runge
Offered By: Kavli Institute for Theoretical Physics via YouTube
Course Description
Overview
Explore causal inference techniques for Earth system sciences in this 45-minute conference talk by Jakob Runge, recorded as part of the Machine Learning for Climate KITP conference. Delve into the challenges of informing society about future climate changes at regional and local scales, and discover how big data and machine learning algorithms can provide new opportunities for descriptive and causal inference in climate systems. Examine the potential for data-driven approaches to answer complex questions when combined with modeling experiments and research in model parameterizations. Gain insights into the interdisciplinary efforts to address climate change through collaborative research, combining expertise from earth system and computational sciences. Learn about the conference's role in summarizing current understanding, identifying open questions, and setting the stage for future advancements in climate science research.
Syllabus
Causal inference for Earth system sciences ▸ Jakob Runge #CLIMATE-C21
Taught by
Kavli Institute for Theoretical Physics
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent