YoVDO

Causal Effects via Regression with Python Code - Part 5

Offered By: Shaw Talebi via YouTube

Tags

Causal Inference Courses Machine Learning Courses Python Courses Regression Analysis Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore regression-based techniques for computing causal effects in this 19-minute video, part of a series on causal effects. Learn about linear regression, double machine learning, and metalearners including T-learner, S-learner, and X-learner. Gain insights into what regression is and how it can be applied to causal inference. Follow along with Python code examples and access additional resources on causal inference and machine learning. Suitable for those interested in data science, statistics, and causal analysis.

Syllabus

Intro -
What is regression? -
3 Regression-based Techniques -
1 Linear Regression -
2 Double Machine Learning -
3 Metalearners -
3.1 T-learner -
3.2 S-learner -
3.3 X-learner -
Example Code -


Taught by

Shaw Talebi

Related Courses

Data Science in Real Life
Johns Hopkins University via Coursera
A Crash Course in Causality: Inferring Causal Effects from Observational Data
University of Pennsylvania via Coursera
Causal Diagrams: Draw Your Assumptions Before Your Conclusions
Harvard University via edX
Causal Inference
Columbia University via Coursera
Causal Inference 2
Columbia University via Coursera