YoVDO

The Transfer in Algebraic K-Theory and THH

Offered By: Hausdorff Center for Mathematics via YouTube

Tags

Algebraic K-theory Courses Homotopy Theory Courses

Course Description

Overview

Explore a comprehensive lecture on the transfer in algebraic K-theory and topological Hochschild homology (THH) delivered by Cary Malkiewich at the Hausdorff Center for Mathematics. Delve into the intricacies of ring maps, wrong-way transfer maps, and their applications in algebraic K-theory. Examine fundamental questions about these transfers and discover a program to address them using trace methods. Investigate the corresponding transfer on THH, particularly in the context of A-theory and its relation to stable maps of free loop spaces. Learn about splitting theorems, housing theorems, the Becker-Gottlieb transfer, and the cyclic bar construction. Analyze the A-theory inclusion conjecture, projection conjecture, and the advantages and disadvantages of various approaches. Gain insights into the trace and its implications for the study of fixed points in dynamical systems.

Syllabus

Introduction
Splitting theorem
Maps between K theory
Why study it
Housing theorem
The Becker Gottlieb transfer
The cyclic bar construction
Additional facts
A theory inclusion conjecture
Projection conjecture
Disadvantages
The trace
What happens to the trace


Taught by

Hausdorff Center for Mathematics

Related Courses

Lie Algebras and Homotopy Theory - Jacob Lurie
Institute for Advanced Study via YouTube
Univalence from a Computer Science Point-of-View - Dan Licata
Institute for Advanced Study via YouTube
Artin Reciprocity via Spheres
Fields Institute via YouTube
Basic Homotopy Theory by Samik Basu
International Centre for Theoretical Sciences via YouTube
Star Clusters in Clique Complexes and the Vietoris-Rips Complex of Planar Sets
Applied Algebraic Topology Network via YouTube