Learning to Predict Requires Integrated Information
Offered By: Models of Consciousness Conferences via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the relationship between Integrated Information Theory and predictive learning in embodied agents through this 21-minute conference talk. Delve into the quantitative approach to consciousness applied to neural networks, examining how embodied agents interact with their environment through the sensorimotor loop. Discover various information theoretic measures quantifying different information flows, including Integrated Information and Morphological Computation. Investigate the antagonistic relationship between these concepts and the potential problem it creates for embodied intelligence and conscious experience. Learn about a proposed solution suggesting that high Integrated Information is necessary for agents to predict future sensory states. Examine the dynamics of these measures in a simple experimental setup using the em-algorithm for agent learning, supporting the hypothesis that integrated information is crucial for learning processes.
Syllabus
Carlotta Langer - Learning to predict requires Integrated Information
Taught by
Models of Consciousness Conferences
Related Courses
TensorFlow Developer Certificate Exam PrepA Cloud Guru Post Graduate Certificate in Advanced Machine Learning & AI
Indian Institute of Technology Roorkee via Coursera Advanced AI Techniques for the Supply Chain
LearnQuest via Coursera Advanced Learning Algorithms
DeepLearning.AI via Coursera IBM AI Engineering
IBM via Coursera