Object Detection Techniques - Part I - Lecture 20
Offered By: University of Central Florida via YouTube
Course Description
Overview
Explore object detection techniques in this comprehensive computer vision lecture. Delve into sliding window approaches, scale space parameters, and pyramid construction for efficient object localization. Learn about aspect ratio considerations, feature extraction methods, and classification strategies. Understand postprocessing techniques, including edge detection and intersection over union. Examine precision-recall metrics and mean average precision (mAP) computation for evaluating object detection performance. Gain valuable insights into the fundamental concepts and advanced algorithms used in modern object detection systems.
Syllabus
Intro
Sliding Window
Sliding Window Approach
Scale Space Parameter
Question
Motivation
Pyramid Construction
Aspect Ratio
Feature Extraction
Classification
Postprocessing
Question from Fatima
Post Processing
Edge Detection
Intersection Over Union
Other Terms
Precision Recall
Compute Map
Taught by
UCF CRCV
Tags
Related Courses
Computer Vision: The FundamentalsUniversity of California, Berkeley via Coursera Detección de objetos
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera Deep Learning Summer School
Independent Deep Learning in Computer Vision
Higher School of Economics via Coursera Computer Vision and Image Analysis
Microsoft via edX