YoVDO

Computer Vision: Classification and Object Recognition - Lecture 11

Offered By: University of Central Florida via YouTube

Tags

Computer Vision Courses Machine Learning Courses Image Classification Courses Feature Extraction Courses Object Recognition Courses ImageNet Courses

Course Description

Overview

Explore the fundamentals of image classification in computer vision through this comprehensive 47-minute lecture from the University of Central Florida's CAP5415 course. Delve into object recognition techniques and the ImageNet dataset, understanding the importance of dataset splitting and feature extraction. Learn about the machine learning framework for classification tasks, focusing on nearest neighbor and linear classifiers. Examine decision boundaries, K-nearest neighbor algorithms, and the motivation behind linear classifiers. Gain insights into classifier design principles, including maximum margin concepts and Support Vector Machines (SVM). This lecture provides a solid foundation for understanding classification techniques in computer vision applications.

Syllabus

Intro
Classification - computer vision
Object Recognition
Image classification - ImageNet
Dataset split
Features
The machine learning framework
Classifiers: Nearest neighbor
Decision boundary for NN Classifier
K-nearest neighbor
Algorithm
Classifiers: Linear
Motivation
Classifier Design
Maximum Margin
SVM - background
Maximal-Margin Classifier


Taught by

UCF CRCV

Tags

Related Courses

Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera
機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera
Machine Learning for Musicians and Artists
Goldsmiths University of London via Kadenze
Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera