Can You Fake It Until You Make It? - Impacts of Differentially Private Synthetic Data on Downstream Classification Fairness
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore the impacts of differentially private synthetic data on downstream classification fairness in this 18-minute conference talk presented at the Association for Computing Machinery (ACM). Delve into the concept of "faking it until you make it" in the context of data privacy and machine learning fairness. Follow the speaker's journey through the motivation behind the research, theoretical proofs, experimental pipeline, and key findings. Gain insights into the complex relationship between privacy-preserving techniques and fairness in classification tasks, and understand the implications for developing more equitable AI systems.
Syllabus
Introduction
Motivation
Proof
Experimental Pipeline
Results
Conclusion
Taught by
ACM FAccT Conference
Related Courses
Translation Tutorial - Thinking Through and Writing About Research Ethics Beyond "Broader Impact"Association for Computing Machinery (ACM) via YouTube Translation Tutorial - Data Externalities
Association for Computing Machinery (ACM) via YouTube Translation Tutorial - Causal Fairness Analysis
Association for Computing Machinery (ACM) via YouTube Implications Tutorial - Using Harms and Benefits to Ground Practical AI Fairness Assessments
Association for Computing Machinery (ACM) via YouTube Responsible AI in Industry - Lessons Learned in Practice
Association for Computing Machinery (ACM) via YouTube