Can You Fake It Until You Make It? - Impacts of Differentially Private Synthetic Data on Downstream Classification Fairness
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore the impacts of differentially private synthetic data on downstream classification fairness in this 18-minute conference talk from FAccT 2021. Delve into the research presented by V. Cheng, V. Suriyakumar, N. Dullerud, S. Joshi, and M. Ghassemi as they investigate whether synthetic data can effectively replace real data in machine learning applications while maintaining fairness. Learn about their experimental pipeline, which includes data generation, model training, and fairness evaluation. Examine the results of their study and understand the implications for using synthetic data in various classification tasks. Gain insights into the potential benefits and limitations of "faking it until you make it" with synthetic data in the context of machine learning fairness.
Syllabus
Introduction
Proof
Experimental Pipeline
Results
Conclusion
Taught by
ACM FAccT Conference
Related Courses
Translation Tutorial - Thinking Through and Writing About Research Ethics Beyond "Broader Impact"Association for Computing Machinery (ACM) via YouTube Translation Tutorial - Data Externalities
Association for Computing Machinery (ACM) via YouTube Translation Tutorial - Causal Fairness Analysis
Association for Computing Machinery (ACM) via YouTube Implications Tutorial - Using Harms and Benefits to Ground Practical AI Fairness Assessments
Association for Computing Machinery (ACM) via YouTube Responsible AI in Industry - Lessons Learned in Practice
Association for Computing Machinery (ACM) via YouTube