Reasoning About Conscious Experience With Axiomatic and Graphical Mathematics
Offered By: Models of Consciousness Conferences via YouTube
Course Description
Overview
Explore a mathematical approach to understanding consciousness in this 13-minute conference talk from the Models of Consciousness Conferences. Delve into the use of axiomatic and graphical mathematics, specifically employing the graphical calculus of symmetric monoidal categories and Frobenius algebras. Discover how this approach leverages the ontological neutrality of category theory to cast aspects of consciousness in mathematical terms. Examine a toy example that demonstrates the power of this axiomatic calculus, revealing insights into external and internal subjective distinction, the privacy of personal subjective experience, and phenomenal unity. Learn how these features naturally emerge from the compositional nature of the axiomatic calculus, addressing key challenges in scientific studies of consciousness. Follow the presentation's structure, covering motivations, framework, interpretation, consequences, and conclusions to gain a comprehensive understanding of this innovative approach to modeling consciousness.
Syllabus
Intro
MOTIVATIONS
FRAMEWORK
INTERPRETATION
CONSEQUENCES
CONCLUSIONS Conclusions
Taught by
Models of Consciousness Conferences
Related Courses
Théorie des Groupes (partie 1) - Une introduction à la théorie des catégoriesÉcole Polytechnique Fédérale de Lausanne via edX Théorie des Groupes (partie 2) - Quotients de groupe
École Polytechnique Fédérale de Lausanne via edX Théorie des Groupes (partie 3) - Actions de groupe
École Polytechnique Fédérale de Lausanne via edX Théorie des Groupes (partie 4) - Groupes abéliens et sous-groupes de Sylow
École Polytechnique Fédérale de Lausanne via edX Category Theory
Indian Institute of Technology Kanpur via Swayam