Area-Minimizing Integral Currents: Singularities and Structure - Lecture
Offered By: Institut des Hautes Etudes Scientifiques (IHES) via YouTube
Course Description
Overview
Explore the intricacies of area-minimizing integral currents in this advanced mathematics lecture. Delve into the generalization of area-minimizing oriented surfaces, pioneered by De Giorgi and extended by Federer and Fleming. Examine celebrated examples of singular minimizers and dimension bounds for singular sets in various codimensions. Investigate recent developments, including Liu's result on fractal singular sets and progress towards proving the conjecture of $(m-2)$-rectifiability. Learn about oriented Plateau problems, integral currents, rectifiability, and key theorems in the field. Gain insights into monotonicity formulas and Federal reduction arguments as Camillo de Lellis from the Institute for Advanced Study presents recent joint works with Anna Skorobogatova and Paul Minter.
Syllabus
Introduction
Oriented Plateau Problem
Integral Currents
Integral Rectifiable
Fundamental Theorem
Regularity Theorem
Minimizers Theorem
Main Theorem
Monotonicity Formula
Federal Reduction Argument
Taught by
Institut des Hautes Etudes Scientifiques (IHES)
Related Courses
Geometry of 2-Dimensional Riemannian Disks and Spheres - Regina RotmanInstitute for Advanced Study via YouTube Discrete Homotopy Theory and Applications
Applied Algebraic Topology Network via YouTube Geodesic Complexity of Riemannian Manifolds
Applied Algebraic Topology Network via YouTube The Gromov-Hausdorff Distance Between Spheres
Applied Algebraic Topology Network via YouTube Symmetric Spaces by Pralay Chatterjee
International Centre for Theoretical Sciences via YouTube