YoVDO

Building Production AI Applications with Ray Serve

Offered By: Anyscale via YouTube

Tags

Machine Learning Courses Distributed Systems Courses Fault Tolerance Courses Inference Courses Scalability Courses Model Deployment Courses Observability Courses Ray Serve Courses Anyscale Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the capabilities of Ray Serve for productionizing modern machine learning workloads in this 30-minute talk. Discover how Ray Serve addresses complex requirements, enabling safe and cost-effective production deployment. Learn about flexible scaling and coordination of multiple models, safe deployment and upgrades, and maximizing hardware utilization with minimal management overhead. Witness a demonstration of Ray Serve's production-ready features, including improvements in scalability, high availability, fault tolerance, and observability. Gain insights into production ML serving patterns and how Ray Serve is tailored to solve them. Hear real-world examples of how the community uses Ray Serve to lower ML inference costs. Watch a live demo of serving an ML application using Ray Serve on the Anyscale platform, highlighting recent improvements in observability, autoscaling, and cost savings. Access the slide deck for additional information and explore Anyscale's AI Application Platform for developing, running, and scaling AI workloads.

Syllabus

Building Production AI Applications with Ray Serve


Taught by

Anyscale

Related Courses

Developing a Tabular Data Model
Microsoft via edX
Data Science in Action - Building a Predictive Churn Model
SAP Learning
Serverless Machine Learning with Tensorflow on Google Cloud Platform 日本語版
Google Cloud via Coursera
Intro to TensorFlow em Português Brasileiro
Google Cloud via Coursera
Serverless Machine Learning con TensorFlow en GCP
Google Cloud via Coursera