Building Machine Learning Pipelines in Airflow with Jupyter Notebooks
Offered By: Toronto Machine Learning Series (TMLS) via YouTube
Course Description
Overview
Learn how to develop end-to-end machine learning pipelines using Jupyter Notebooks and Airflow in this 38-minute conference talk from the Toronto Machine Learning Series. Discover a pattern for implementing each component of the pipeline in a notebook, parameterizing it with Papermill, and then scaling and scheduling the entire process using Airflow. Gain insights from experienced data scientists Palermo Penano and Kenneth Lau as they share their expertise in building maintainable and scalable machine learning solutions for financial services applications.
Syllabus
Building Machine Learning Pipelines in Airflow with Jupyter Notebooks
Taught by
Toronto Machine Learning Series (TMLS)
Related Courses
Introduction to Data Science in PythonUniversity of Michigan via Coursera Julia Scientific Programming
University of Cape Town via Coursera Python for Data Science
University of California, San Diego via edX Probability and Statistics in Data Science using Python
University of California, San Diego via edX Introduction to Python: Fundamentals
Microsoft via edX