YoVDO

Build Your Machine Learning Pipeline in These 4 Simple Steps - Loan Prediction Scikit-Learn Example

Offered By: Prodramp via YouTube

Tags

Machine Learning Courses Jupyter Notebooks Courses Data Cleaning Courses Feature Engineering Courses Data Ingestion Courses Data Augmentation Courses

Course Description

Overview

Develop a comprehensive machine learning pipeline for loan prediction using scikit-learn in this 59-minute tutorial. Learn to implement key components including data ingestion, cleaning, feature engineering, augmentation, model building, improvement, and deployment. Follow along with four Jupyter notebooks covering different aspects of the pipeline, from initial data processing to model reuse for predictions. Gain hands-on experience with pandas, scikit-learn, and other essential tools for data analysis and machine learning in Python.

Syllabus

- Start of the Video
- Intro
- Jupyter Notebook #1 - Data Ingest, cleaning, ML algos
- Jupyter Notebook #2 - Adding Feature Engineering
- Jupyter Notebook #3 - Data Augmentation
- Jupyter Notebook #4 - Using saved model and scoring with test data
- Recap


Taught by

Prodramp

Related Courses

TensorFlow を使った畳み込みニューラルネットワーク
DeepLearning.AI via Coursera
Emotion AI: Facial Key-points Detection
Coursera Project Network via Coursera
Transfer Learning for Food Classification
Coursera Project Network via Coursera
Facial Expression Classification Using Residual Neural Nets
Coursera Project Network via Coursera
Apply Generative Adversarial Networks (GANs)
DeepLearning.AI via Coursera