YoVDO

Build a Predictive Text Model for Avatar: The Last Airbender with Tidymodels

Offered By: Julia Silge via YouTube

Tags

Text Analysis Courses R Programming Courses Model Evaluation Courses Data Exploration Courses Class Imbalances Courses tidymodels Courses

Course Description

Overview

Learn to build a predictive text model using R and tidymodels to identify speakers from Avatar: The Last Airbender dialogue. Explore the #TidyTuesday Last Airbender dataset, create visualizations with custom color palettes, and handle class imbalance in the data. Implement preprocessing techniques, evaluate model performance, and calculate model-agnostic variable importance scores to gain insights into the most influential features for speaker prediction.

Syllabus

Introduction
Welcome
The data
Exploration
Avatar Palette
DataFrame
Weighted Log Odds
New Table
Graphing
Building the model
Class imbalance
Preprocessing
Results
Evaluation
Variable importance
Variable important scores


Taught by

Julia Silge

Related Courses

Machine Learning With Big Data
University of California, San Diego via Coursera
Recolección y exploración de datos
Tecnológico de Monterrey via Coursera
Capstone: Create Value from Open Data
ESSEC Business School via Coursera
Big Data - Capstone Project
University of California, San Diego via Coursera
Análisis de Datos - Proyecto Final
Tecnológico de Monterrey via Coursera