YoVDO

Build a Predictive Text Model for Avatar: The Last Airbender with Tidymodels

Offered By: Julia Silge via YouTube

Tags

Text Analysis Courses R Programming Courses Model Evaluation Courses Data Exploration Courses Class Imbalances Courses tidymodels Courses

Course Description

Overview

Learn to build a predictive text model using R and tidymodels to identify speakers from Avatar: The Last Airbender dialogue. Explore the #TidyTuesday Last Airbender dataset, create visualizations with custom color palettes, and handle class imbalance in the data. Implement preprocessing techniques, evaluate model performance, and calculate model-agnostic variable importance scores to gain insights into the most influential features for speaker prediction.

Syllabus

Introduction
Welcome
The data
Exploration
Avatar Palette
DataFrame
Weighted Log Odds
New Table
Graphing
Building the model
Class imbalance
Preprocessing
Results
Evaluation
Variable importance
Variable important scores


Taught by

Julia Silge

Related Courses

Modeling with tidymodels in R
DataCamp
Introduction to Regression Models by Using R and Tidymodels
Microsoft via YouTube
How to Handle High Cardinality Predictors for Data on Museums in the UK
Julia Silge via YouTube
Handling Coefficients for Modeling Collegiate Sports Expenditures
Julia Silge via YouTube
Poisson Regression with Tidymodels for Package Vignette Counts
Julia Silge via YouTube