YoVDO

A Local Torelli Theorem for Log Symplectic Manifolds

Offered By: Hausdorff Center for Mathematics via YouTube

Tags

Symplectic Geometry Courses Mathematical Physics Courses Moduli Space Courses Cohomology Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive lecture on log symplectic manifolds and their local Torelli theorem. Delve into the generalization of holomorphic symplectic manifolds, where symplectic forms develop mild poles on hypersurfaces. Discover the local model for the moduli space of log symplectic manifolds, focusing on those with normal crossing degeneracy divisors. Compare the similarities and differences with the local Torelli theorem for compact holomorphic symplectic manifolds, examining how the moduli space is described through second cohomology. Investigate the highly singular and reducible nature of the log symplectic case, understanding the impact of deforming hypersurface singularities under specific integrality constraints. Learn about the application of these methods in producing new irreducible components of the moduli space of log symplectic structures on Pn. This lecture, presented by Brent Pym at the Hausdorff Center for Mathematics, is based on joint work with Mykola Matviichuk and Travis Schedler.

Syllabus

Brent Pym: A local Torelli theorem for log symplectic manifolds


Taught by

Hausdorff Center for Mathematics

Related Courses

Integer-Valued Gromov-Witten Type Invariants - Guangbo Xu
Institute for Advanced Study via YouTube
Geometry and Topology of Hamiltonian Floer Complexes in Low-Dimension - Dustin Connery-Grigg
Institute for Advanced Study via YouTube
On the Spatial Restricted Three-Body Problem - Agustin Moreno
Institute for Advanced Study via YouTube
Distinguishing Monotone Lagrangians via Holomorphic Annuli - Ailsa Keating
Institute for Advanced Study via YouTube
Floer Cohomology and Arc Spaces - Mark McLean
Institute for Advanced Study via YouTube