YoVDO

Boosting LLM Development and Training Efficiency: Automated Parallelization with MindSpore

Offered By: Linux Foundation via YouTube

Tags

Machine Learning Courses Deep Learning Courses Hyperparameter Optimization Courses Parallel Computing Courses Model Training Courses Distributed Training Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore automated parallelization techniques for boosting large language model (LLM) development and training efficiency using MindSpore in this 44-minute conference talk by Yiren Xing from Huawei. Learn about an innovative approach that allows developers to focus on algorithm research without the need for intrusive model modifications. Discover how distributed training on large-scale clusters can be achieved through simple strategy configurations. Gain insights into MindSpore's hyperparameter search model for automatically finding optimal parallelization strategies, which can achieve 90%-110% of expert tuning performance. Understand how this method significantly reduces model modification time while efficiently accelerating LLM training. The presentation covers both the challenges of large-scale distributed parallel training and the solutions offered by automated parallelization, making it valuable for AI researchers and developers working with large language models.

Syllabus

Boosting LLM Development & Training Efficiency: Automated Parallelization with MindSpore- Yiren Xing


Taught by

Linux Foundation

Tags

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent