YoVDO

BLEURT - Learning Robust Metrics for Text Generation

Offered By: Yannic Kilcher via YouTube

Tags

Model Evaluation Courses Machine Learning Courses BERT Courses Text Generation Courses Synthetic Data Courses

Course Description

Overview

Explore a comprehensive video explanation of the BLEURT paper, which proposes a learned evaluation metric for text generation models. Dive into the challenges of evaluating machine translation systems and learn how BLEURT addresses these issues through a novel pre-training scheme using synthetic data. Discover the key components of the approach, including fine-tuning BERT, generating synthetic data, and priming via auxiliary tasks. Examine the experimental results, distribution shifts, and potential concerns associated with this innovative metric. Gain insights into the state-of-the-art performance of BLEURT on recent WMT Metrics shared tasks and the WebNLG Competition dataset.

Syllabus

- Intro & High-Level Overview
- The Problem with Evaluating Machine Translation
- Task Evaluation as a Learning Problem
- Naive Fine-Tuning BERT
- Pre-Training on Synthetic Data
- Generating the Synthetic Data
- Priming via Auxiliary Tasks
- Experiments & Distribution Shifts
- Concerns & Conclusion


Taught by

Yannic Kilcher

Related Courses

3D Deep Learning for Gaming with Srinath Sridhar and Stanford Artificial Intelligence
Resemble AI via YouTube
Deep Learning in Gaming with Idan Beck
Resemble AI via YouTube
Preserving Patient Safety as AI Transforms Clinical Care - Curt Langlotz, Stanford University
Alan Turing Institute via YouTube
Synthesizing Plausible Privacy-Preserving Location Traces
IEEE via YouTube
Hacking the Pentagon - How a Rebel Alliance Shifts Culture to Protect National Security
BSidesLV via YouTube