Decision-Focused Learning - Integrating Downstream Combinatorics in ML
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore a thought-provoking conference talk on integrating machine learning and discrete optimization to solve complex real-world problems. Delve into the advantages of combining these fields, including the potential to create more flexible combinatorial solvers capable of learning tailored solution strategies. Discover how combinatorial optimization can be directly integrated into deep learning pipelines, facilitating decision-focused learning where the training loss is a function of downstream optimization decisions. Learn from Bistra Dilkina of the University of Southern California as she presents her insights at the Deep Learning and Combinatorial Optimization 2021 conference, hosted by the Institute for Pure & Applied Mathematics at UCLA.
Syllabus
Bistra Dilkina: "Decision-focused learning: integrating downstream combinatorics in ML"
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Natural Language ProcessingColumbia University via Coursera Intro to Algorithms
Udacity Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera Paradigms of Computer Programming
Université catholique de Louvain via edX Data Structures and Algorithm Design Part I | 数据结构与算法设计(上)
Tsinghua University via edX