BISCUIT: Causal Representation Learning from Binary Interactions
Offered By: Valence Labs via YouTube
Course Description
Overview
Explore a comprehensive talk on causal representation learning from binary interactions, focusing on the BISCUIT method. Delve into the identification of causal variables in environments like robotics and embodied AI, where an agent's interactions can be described by unknown binary variables. Learn about the BISCUIT architecture, which simultaneously learns causal variables and their corresponding binary interaction variables. Examine experimental results from three robotic-inspired datasets, demonstrating BISCUIT's accuracy in identifying causal variables and its scalability to complex, realistic environments. Gain insights from the speaker, Phillip Lippe, as he discusses the method's applications, limitations, and potential future developments in the field of causal representation learning.
Syllabus
- Discussant Slide + Introduction
- BISCUIT Binary Interactions
- BISCUIT Architecture
- Experiments
- Conclusion
- Discussion
Taught by
Valence Labs
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent