Benefits of Saying I Don't Know When Analyzing and Modeling the Climate System With ML - Elizabeth Barnes
Offered By: Kavli Institute for Theoretical Physics via YouTube
Course Description
Overview
Explore the benefits of acknowledging uncertainty in climate system analysis and modeling using machine learning in this conference talk from the Machine Learning for Climate KITP conference. Delve into state-dependent predictability, challenges in regression problems, and controlled abstention networks. Gain insights into how big data and machine learning algorithms can advance climate science, enabling detailed analysis and potential causal inferences. Discover how this interdisciplinary approach can address complex climate questions and inform future predictions at regional and local scales.
Syllabus
Introduction
State dependent predictability
Challenges
Regression problems
Controlled abstention networks
Statedependent predictability
Questions
Discussion
Taught by
Kavli Institute for Theoretical Physics
Related Courses
La Terre comme système : une approche géographiqueSorbonne University via edX Earth System Science
CEC via Swayam Machine Learning For Earth System Sciences
Indian Institute of Technology, Kharagpur via Swayam A Deep Learning Parameterization of Gravity Wave Drag Coupled to an Atmospheric Global Climate Model - Aditi Sheshadri
Kavli Institute for Theoretical Physics via YouTube Lessons and Outlook for ML Parameterization of Sub Grid Atmospheric Physics From the Vantage of Emulating Cloud Superparameterization - Mike Pritchard
Kavli Institute for Theoretical Physics via YouTube