TopoAct - Visually Exploring the Shape of Activations in Deep Learning
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore the shape of activations in deep learning through a comprehensive lecture on TopoAct, a visual exploration system. Delve into the organizational principles behind neuron activations in deep neural networks like GoogLeNet and ResNet. Discover how topological data analysis tools are applied to study topological summaries of activation vectors within and across layers. Gain valuable insights into learned representations of image classifiers through visual exploration scenarios. Examine the joint work of Bei Wang, Archit Rathore, Nithin Chalapathi, and Sourabh Palande, which investigates the space of activations and their relationships within and across network layers.
Syllabus
Bei Wang (5/20/20): TopoAct: Visually exploring the shape of activations in deep learning
Taught by
Applied Algebraic Topology Network
Related Courses
Topological Data Analysis - New Perspectives on Machine Learning - by Jesse JohnsonOpen Data Science via YouTube Analyzing Point Processes Using Topological Data Analysis
Applied Algebraic Topology Network via YouTube MD Simulations and Machine Learning to Quantify Interfacial Hydrophobicity
Applied Algebraic Topology Network via YouTube Topological Data Analysis of Plant-Pollinator Resource Complexes - Melinda Kleczynski
Applied Algebraic Topology Network via YouTube Hubert Wagner - Topological Data Analysis in Non-Euclidean Spaces
Applied Algebraic Topology Network via YouTube