Bayesian Machine Learning - Benefits, Drawbacks, and Practical Applications
Offered By: Data Science Festival via YouTube
Course Description
Overview
Explore the world of Bayesian machine learning in this 35-minute conference talk from the Data Science Festival Summer School. Delve into the advantages of considering all possible parameter vectors compatible with observed data, providing a robust approach to model uncertainty and allowing for the gentle injection of prior knowledge. Compare this method to classical machine learning techniques, which focus on finding the 'best' vector of model parameters to fit data, potentially leading to overfitting issues. Learn about the benefits and drawbacks of the Bayesian approach, and discover practical applications from Egor Kraev, Head of AI at Wise. Gain insights into handling model uncertainty, avoiding overfitting, and leveraging prior knowledge in your machine learning projects.
Syllabus
Bayesian Machine Learning
Taught by
Data Science Festival
Related Courses
Discrete Inference and Learning in Artificial VisionÉcole Centrale Paris via Coursera Observation Theory: Estimating the Unknown
Delft University of Technology via edX Computational Probability and Inference
Massachusetts Institute of Technology via edX Probabilistic Graphical Models 3: Learning
Stanford University via Coursera Applied Time-Series Analysis
Indian Institute of Technology Madras via Swayam