YoVDO

Bayesian Machine Learning - Benefits, Drawbacks, and Practical Applications

Offered By: Data Science Festival via YouTube

Tags

Data Science Courses Machine Learning Courses Statistical Inference Courses Probability Theory Courses Parameter Estimation Courses Overfitting Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the world of Bayesian machine learning in this 35-minute conference talk from the Data Science Festival Summer School. Delve into the advantages of considering all possible parameter vectors compatible with observed data, providing a robust approach to model uncertainty and allowing for the gentle injection of prior knowledge. Compare this method to classical machine learning techniques, which focus on finding the 'best' vector of model parameters to fit data, potentially leading to overfitting issues. Learn about the benefits and drawbacks of the Bayesian approach, and discover practical applications from Egor Kraev, Head of AI at Wise. Gain insights into handling model uncertainty, avoiding overfitting, and leveraging prior knowledge in your machine learning projects.

Syllabus

Bayesian Machine Learning


Taught by

Data Science Festival

Related Courses

Practical Machine Learning
Johns Hopkins University via Coursera
Practical Deep Learning For Coders
fast.ai via Independent
機器學習基石下 (Machine Learning Foundations)---Algorithmic Foundations
National Taiwan University via Coursera
Data Analytics Foundations for Accountancy II
University of Illinois at Urbana-Champaign via Coursera
Entraînez un modèle prédictif linéaire
CentraleSupélec via OpenClassrooms