BA-LR: Towards an Interpretable and Explainable Approach for Speaker Recognition
Offered By: Center for Language & Speech Processing(CLSP), JHU via YouTube
Course Description
Overview
Explore an in-depth conference talk on interpretable and explainable approaches for speaker recognition presented by Imen Ben Amor from the Center for Language & Speech Processing (CLSP) at Johns Hopkins University. Delivered as part of the JSALT 2023 workshop held in Le Mans, France, this 75-minute presentation delves into the BA-LR methodology, aiming to enhance understanding and transparency in speaker recognition systems. Gain insights into cutting-edge research that bridges the gap between complex machine learning models and human-interpretable results in the field of speech processing.
Syllabus
BA-LR: Towards an interpretable and explainable approach for speaker recognition -- Imen Ben Amor
Taught by
Center for Language & Speech Processing(CLSP), JHU
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent