YoVDO

AWQ for LLM Quantization - Efficient Inference Framework for Large Language Models

Offered By: MIT HAN Lab via YouTube

Tags

Quantization Courses Edge Computing Courses Model Compression Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the innovative Activation-aware Weight Quantization (AWQ) technique for efficient large language model (LLM) deployment in this 21-minute video presentation by MIT HAN Lab. Learn how AWQ addresses the challenges of astronomical model sizes by protecting salient weights and optimizing per-channel scaling based on activation observations. Discover how this hardware-friendly approach outperforms existing methods in preserving LLMs' generalization abilities across various domains and modalities, including instruction-tuned and multi-modal models. Gain insights into the implementation of an efficient inference framework that significantly speeds up LLM deployment on both desktop and mobile GPUs, even enabling the use of 70B Llama-2 models on mobile devices. Understand the potential of AWQ in democratizing access to powerful language models and improving their performance in real-world applications.

Syllabus

AWQ for LLM Quantization


Taught by

MIT HAN Lab

Related Courses

Fog Networks and the Internet of Things
Princeton University via Coursera
AWS IoT: Developing and Deploying an Internet of Things
Amazon Web Services via edX
Business Considerations for 5G with Edge, IoT, and AI
Linux Foundation via edX
5G Strategy for Business Leaders
Linux Foundation via edX
Intel® Edge AI Fundamentals with OpenVINO™
Intel via Udacity