AWQ for LLM Quantization - Efficient Inference Framework for Large Language Models
Offered By: MIT HAN Lab via YouTube
Course Description
Overview
Explore the innovative Activation-aware Weight Quantization (AWQ) technique for efficient large language model (LLM) deployment in this 21-minute video presentation by MIT HAN Lab. Learn how AWQ addresses the challenges of astronomical model sizes by protecting salient weights and optimizing per-channel scaling based on activation observations. Discover how this hardware-friendly approach outperforms existing methods in preserving LLMs' generalization abilities across various domains and modalities, including instruction-tuned and multi-modal models. Gain insights into the implementation of an efficient inference framework that significantly speeds up LLM deployment on both desktop and mobile GPUs, even enabling the use of 70B Llama-2 models on mobile devices. Understand the potential of AWQ in democratizing access to powerful language models and improving their performance in real-world applications.
Syllabus
AWQ for LLM Quantization
Taught by
MIT HAN Lab
Related Courses
TensorFlow Lite for Edge Devices - TutorialfreeCodeCamp Few-Shot Learning in Production
HuggingFace via YouTube TinyML Talks Germany - Neural Network Framework Using Emerging Technologies for Screening Diabetic
tinyML via YouTube TinyML for All: Full-stack Optimization for Diverse Edge AI Platforms
tinyML via YouTube TinyML Talks - Software-Hardware Co-design for Tiny AI Systems
tinyML via YouTube