Avoidance of Traps for Nonconvex Stochastic Optimization and Equilibrium Learning in Games
Offered By: Fields Institute via YouTube
Course Description
Overview
Explore a 25-minute conference talk from the Fourth Symposium on Machine Learning and Dynamical Systems, presented by Anas Barakat from ETH Zürich at the Fields Institute. Delve into strategies for avoiding traps in nonconvex stochastic optimization and equilibrium learning in games. Gain insights into advanced techniques that address challenges in machine learning and dynamical systems, with a focus on improving optimization processes and game theory applications.
Syllabus
Avoidance of traps for nonconvex stochastic optimization and equilibrium learning in games
Taught by
Fields Institute
Related Courses
On Gradient-Based Optimization - Accelerated, Distributed, Asynchronous and StochasticSimons Institute via YouTube Optimisation - An Introduction: Professor Coralia Cartis, University of Oxford
Alan Turing Institute via YouTube Optimization in Signal Processing and Machine Learning
IEEE Signal Processing Society via YouTube Methods for L_p-L_q Minimization in Image Restoration and Regression - SIAM-IS Seminar
Society for Industrial and Applied Mathematics via YouTube Certificates of Nonnegativity and Their Applications in Theoretical Computer Science
Society for Industrial and Applied Mathematics via YouTube