Avoidance of Traps for Nonconvex Stochastic Optimization and Equilibrium Learning in Games
Offered By: Fields Institute via YouTube
Course Description
Overview
Explore a 25-minute conference talk from the Fourth Symposium on Machine Learning and Dynamical Systems, presented by Anas Barakat from ETH Zürich at the Fields Institute. Delve into strategies for avoiding traps in nonconvex stochastic optimization and equilibrium learning in games. Gain insights into advanced techniques that address challenges in machine learning and dynamical systems, with a focus on improving optimization processes and game theory applications.
Syllabus
Avoidance of traps for nonconvex stochastic optimization and equilibrium learning in games
Taught by
Fields Institute
Related Courses
Introduction to Dynamical Systems and ChaosSanta Fe Institute via Complexity Explorer Nonlinear Dynamics 1: Geometry of Chaos
Georgia Institute of Technology via Independent Linear Differential Equations
Boston University via edX Algorithmic Information Dynamics: From Networks to Cells
Santa Fe Institute via Complexity Explorer Nonlinear Differential Equations: Order and Chaos
Boston University via edX