YoVDO

Automating Data Pipelines with Python and GitHub Actions - Code Walkthrough

Offered By: Shaw Talebi via YouTube

Tags

GitHub Actions Courses Data Science Courses Machine Learning Courses Python Courses CI/CD Courses Data Engineering Courses Data Pipelines Courses ETL Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Learn how to automate data pipelines using Python and GitHub Actions in this comprehensive video tutorial. Explore two methods for automation: using orchestration tools and combining Python with triggers. Dive into a practical example of automating an ETL (Extract, Transform, Load) pipeline, covering the entire process from creating the Python script to setting up a GitHub repository and configuring GitHub Actions. Discover how to create workflow YAML files, add repository secrets, and commit changes. Gain insights into building a full-stack data science project, with additional resources provided for further learning and implementation.

Syllabus

Intro -
Motivation -
2 Ways to Automate -
Way 1: Orchestration Tool -
Way 2: Python + Triggers -
GitHub Actions -
Example Code: Automating ETL Pipeline -
1 Create ETL Python Script -
2 Create GitHub Repo -
3 Create Workflow .yml File -
4 Add Repo Secrets -
5 Commit and Push -
Final ML App -


Taught by

Shaw Talebi

Related Courses

Google Cloud Big Data and Machine Learning Fundamentals en Español
Google Cloud via Coursera
Data Analysis with Python
IBM via Coursera
Intro to TensorFlow 日本語版
Google Cloud via Coursera
TensorFlow on Google Cloud - Français
Google Cloud via Coursera
Freedom of Data with SAP Data Hub
SAP Learning