Arthur Bartels: K-Theory of Group Rings
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore the fourth lecture in a series on K-theory of group rings, delivered by Arthur Bartels as part of the Hausdorff Trimester Program: K-Theory and Related Fields. Delve into the Farrell-Jones Conjecture, which proposes that the K-theory of group rings RG can be calculated using the K-theory of group rings RV, where V represents various virtually cyclic subgroups of G. Examine the conjecture's formulation and proof methods, with a particular focus on controlled algebra. Understand how controlled algebra serves as a crucial link between the algebraic and homotopy theoretic formulation of the conjecture and the often geometric proofs of its instances. Gain insights into this complex mathematical topic through this 58-minute lecture from the Hausdorff Center for Mathematics.
Syllabus
Arthur Bartels: K-theory of group rings (Lecture 4)
Taught by
Hausdorff Center for Mathematics
Related Courses
Artin Reciprocity via SpheresFields Institute via YouTube Alexander Efimov: On the K-Theory of Large Triangulated Categories
International Mathematical Union via YouTube Real Reductive Groups, K-Theory and the Oka Principle
Hausdorff Center for Mathematics via YouTube Bott Periodicity and the "Periodic Table" of Topological Insulators and Superconductors
Hausdorff Center for Mathematics via YouTube A Categorical Description of Discriminants
IMSA via YouTube