YoVDO

Arthur Bartels: K-Theory of Group Rings

Offered By: Hausdorff Center for Mathematics via YouTube

Tags

K Theory Courses Homotopy Theory Courses

Course Description

Overview

Explore the fourth lecture in a series on K-theory of group rings, delivered by Arthur Bartels as part of the Hausdorff Trimester Program: K-Theory and Related Fields. Delve into the Farrell-Jones Conjecture, which proposes that the K-theory of group rings RG can be calculated using the K-theory of group rings RV, where V represents various virtually cyclic subgroups of G. Examine the conjecture's formulation and proof methods, with a particular focus on controlled algebra. Understand how controlled algebra serves as a crucial link between the algebraic and homotopy theoretic formulation of the conjecture and the often geometric proofs of its instances. Gain insights into this complex mathematical topic through this 58-minute lecture from the Hausdorff Center for Mathematics.

Syllabus

Arthur Bartels: K-theory of group rings (Lecture 4)


Taught by

Hausdorff Center for Mathematics

Related Courses

Lie Algebras and Homotopy Theory - Jacob Lurie
Institute for Advanced Study via YouTube
Univalence from a Computer Science Point-of-View - Dan Licata
Institute for Advanced Study via YouTube
Artin Reciprocity via Spheres
Fields Institute via YouTube
Basic Homotopy Theory by Samik Basu
International Centre for Theoretical Sciences via YouTube
Star Clusters in Clique Complexes and the Vietoris-Rips Complex of Planar Sets
Applied Algebraic Topology Network via YouTube