Are All Features Created Equal? - Aleksander Madry
Offered By: Institute for Advanced Study via YouTube
Course Description
Overview
Syllabus
Intro
Machine Learning: A Success Story
Why Do We Love Deep Learning?
Key Phenomenon: Adversarial Perturbations
ML via Adversarial Robustness Lens
But: "How"/"what" does not tell us "why"
Why Are Adv. Perturbations Bad?
Human Perspective
ML Perspective
A Simple Experiment
The Robust Features Model
The Simple Experiment: A Second Look
Human vs ML Model Priors
New capability: Robustification
Some Direct Consequences
Robustness and Data Efficiency
Robustness + Perception Alignment
Robustness → Better Representations
Robustness + Image Synthesis
Problem: Correlations can be weird
Useful tool(?): Counterfactual Analysis with Robust Models
Adversarial examples arise from non-robust features in the data
Taught by
Institute for Advanced Study
Related Courses
Ilustración EditorialDomestika Introducción al grabado ilustrado con Procreate
Domestika Diffusion Models Beat GANs on Image Synthesis - Machine Learning Research Paper Explained
Yannic Kilcher via YouTube DALL-E Mini Explained - ML Coding Series
Aleksa Gordić - The AI Epiphany via YouTube Diffusion Models Beat GANs on Image Synthesis - ML Coding Series - Part 2
Aleksa Gordić - The AI Epiphany via YouTube