Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a 39-minute lecture on approximating k-edge-connected spanning subgraphs (kECSS) using a near-linear time LP solver. Delve into the NP-hard problem of computing minimum-cost sub-networks resilient against up to k link failures. Learn about the improved algorithm that achieves a (1+ε)-approximation of the optimal fractional solution in Õ(m/ε²) time, independent of k. Discover how this can be transformed into a (2+ε) approximation algorithm for integral kECSS, running in Õ(m/(ε²) + {k²n^{1.5}}/ε²) time. Compare this advancement to previous results, noting the improved running time while maintaining an approximation ratio close to two. Gain insights into the broader class of survival network design problems (SNDP) and their applications in optimization and algorithm design.
Syllabus
Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver
Taught by
Simons Institute
Related Courses
Natural Language ProcessingColumbia University via Coursera Intro to Algorithms
Udacity Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera Paradigms of Computer Programming
Université catholique de Louvain via edX Data Structures and Algorithm Design Part I | 数据结构与算法设计(上)
Tsinghua University via edX