YoVDO

Applications of Stanford DSPy for Self-Improving Language Model Pipelines

Offered By: Databricks via YouTube

Tags

Language Models Courses Machine Learning Courses Prompt Engineering Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore practical applications and examples of Stanford DSPy in this 33-minute talk by Thomas Joshi, a researcher at Stanford DSPy. Learn how this programming model enhances the development and optimization of language model (LM) pipelines. Discover how DSPy utilizes text transformation graphs and parameterized modules to create adaptive, self-improving pipelines, moving beyond traditional rigid, hard-coded prompt templates. Examine case studies showcasing DSPy programs efficiently solving complex tasks like complex question answering. Gain insights into DSPy's ability to compile and optimize pipelines for metrics, enabling both large and small language models to achieve superior results with minimal effort. Understand how even a few lines of code can significantly boost performance using this innovative approach to LM pipeline development.

Syllabus

Applications of Stanford DSPy for Self-Improving Language Model Pipelines


Taught by

Databricks

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent