Circuit-to-Hamiltonian from Tensor Networks and Fault Tolerance - IPAM at UCLA
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore a groundbreaking approach to quantum circuit mapping in this 37-minute conference talk presented by Anurag Anshu from Harvard University at IPAM's Topology, Quantum Error Correction and Quantum Gravity Workshop. Delve into a novel method for transforming arbitrary quantum circuits into local Hamiltonians, bypassing the traditional Feynman-Kitaev construction and its reliance on clock registers. Discover how this innovative technique leverages injective tensor networks and parent Hamiltonians to encode quantum computations, albeit with inherent stochastic noise. Learn about the integration of quantum fault tolerance to enhance robustness and examine the implications for states with varying energy densities. Gain insights into the BQP-hardness of contracting injective tensor networks and explore the potential impact on the quantum PCP conjecture. Uncover the possibilities of performing QMA verification in logarithmic depth and broaden your understanding of cutting-edge quantum computing concepts.
Syllabus
Anurag Anshu - Circuit-to-Hamiltonian from tensor networks and fault tolerance - IPAM at UCLA
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Quantum Information Science II: Advanced quantum algorithms and information theoryMassachusetts Institute of Technology via edX Physical Basics of Quantum Computing
Saint Petersburg State University via Coursera Advanced Quantum Mechanics with Applications
Indian Institute of Technology Guwahati via Swayam Selected chapters of quantum mechanics for modern engineering
National University of Science and Technology MISiS via edX Predicting Many Properties of a Quantum System from Very Few Measurements
Simons Institute via YouTube