Antonio Esposito: Nonlinear Degenerate Cross Diffusion Systems with Nonlocal Interaction
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore a lecture on nonlinear degenerate cross diffusion systems with nonlocal interaction, presented by Antonio Esposito at the Hausdorff Center for Mathematics. Delve into a joint work investigating partial differential equations with nonlinear cross-diffusion and nonlocal interactions, applicable to social sciences, finance, biology, and real-world scenarios. Learn about the global-in-time existence of weak solutions using a semi-implicit version of the Jordan-Kinderlehrer-Otto scheme, which allows for consideration of nonlocal interaction terms without a formal gradient flow structure. Examine the uniform 'coerciveness' assumption on diffusion, enabling the study of systems with degenerate cross-diffusion. Follow the lecture's structure, covering introduction, multiple species settings, examples, assumptions on interaction potentials, the semi-implicit JKO approach, piecewise constant interpolation, and flow interchange, concluding with key insights into this complex mathematical topic.
Syllabus
Introduction
Nonlinear diffusion + nonlocal interactions
Many species
Setting
Examples of A
Assumptions on the interaction potentials
Goal: Existence of weak solutions
Semi-Implicit JKO: our case
Piecewise constant interpolation
Flow Interchange
Conclusion
Taught by
Hausdorff Center for Mathematics
Related Courses
Game TheoryStanford University via Coursera Network Analysis in Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera Visualizing Algebra
San Jose State University via Udacity Conceptos y Herramientas para la Física Universitaria
Tecnológico de Monterrey via Coursera Aplicaciones de la Teoría de Grafos a la vida real
Universitat Politècnica de València via UPV [X]