Antonio Esposito: Nonlinear Degenerate Cross Diffusion Systems with Nonlocal Interaction
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore a lecture on nonlinear degenerate cross diffusion systems with nonlocal interaction, presented by Antonio Esposito at the Hausdorff Center for Mathematics. Delve into a joint work investigating partial differential equations with nonlinear cross-diffusion and nonlocal interactions, applicable to social sciences, finance, biology, and real-world scenarios. Learn about the global-in-time existence of weak solutions using a semi-implicit version of the Jordan-Kinderlehrer-Otto scheme, which allows for consideration of nonlocal interaction terms without a formal gradient flow structure. Examine the uniform 'coerciveness' assumption on diffusion, enabling the study of systems with degenerate cross-diffusion. Follow the lecture's structure, covering introduction, multiple species settings, examples, assumptions on interaction potentials, the semi-implicit JKO approach, piecewise constant interpolation, and flow interchange, concluding with key insights into this complex mathematical topic.
Syllabus
Introduction
Nonlinear diffusion + nonlocal interactions
Many species
Setting
Examples of A
Assumptions on the interaction potentials
Goal: Existence of weak solutions
Semi-Implicit JKO: our case
Piecewise constant interpolation
Flow Interchange
Conclusion
Taught by
Hausdorff Center for Mathematics
Related Courses
Differential Equations in ActionUdacity Dynamical Modeling Methods for Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera An Introduction to Functional Analysis
École Centrale Paris via Coursera Practical Numerical Methods with Python
George Washington University via Independent The Finite Element Method for Problems in Physics
University of Michigan via Coursera