YoVDO

P=W via H2 - Moduli Space of Stable Twisted Higgs Bundles

Offered By: M-Seminar, Kansas State University via YouTube

Tags

Algebraic Geometry Courses Lie Algebras Courses Moduli Space Courses Cohomology Courses Higgs Bundles Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a lecture on the $P=W$ conjecture in algebraic geometry, focusing on its connection to the Lie algebra $H_2$ of polynomial Hamiltonian vector fields on the plane. Delve into the moduli space of stable twisted Higgs bundles on algebraic curves, examining two natural filtrations on its cohomology: the weight filtration W from the Betti realization and the perverse filtration P induced by the Hitchin map. Discover how computations in Khovanov-Rozansky homology of links motivate the search for an $H_2$ action on the cohomology of the moduli space. Investigate the algebra generated by tautological classes and Hecke operators, and learn how both P and W coincide with the filtration associated with an $sl_2$ subalgebra of $H_2$. Gain insights into this joint work with Hausel, Minets, and Schiffmann, building upon the proof by De Cataldo, Hausel, and Migliorini for rank 2 cases and exploring the conjecture for arbitrary ranks.

Syllabus

Anton Mellit - $P=W$ via $H_2$


Taught by

M-Seminar, Kansas State University

Related Courses

Exceptional Splitting of Reductions of Abelian Surfaces With Real Multiplication - Yunqing Tang
Institute for Advanced Study via YouTube
A Derived Hecke Algebra in the Context of the Mod P Langlands Program - Rachel Ollivier
Institute for Advanced Study via YouTube
Quantum Complexity and L-functions
Fields Institute via YouTube
Machine Learning the Landscape - Lecture 1
International Centre for Theoretical Sciences via YouTube
Robert Ghrist - Laplacians and Network Sheaves
Applied Algebraic Topology Network via YouTube