Exploring Many-Body Problems with Arrays of Individual Atoms
Offered By: Stanford Physics via YouTube
Course Description
Overview
Explore the fascinating world of synthetic quantum matter in this Stanford Physics colloquium talk. Delve into the manipulation of individual quantum objects like atoms, ions, and molecules to build elementary many-body systems. Learn how physicists control interactions between atoms to study quantum magnetism, excitation transport, and superconductivity, gaining deeper insights into the N-body problem. Discover the potential industrial applications of these quantum machines in solving combinatorial optimization problems. Examine a specific example of a synthetic quantum system using laser-cooled ensembles of individual atoms trapped in microscopic optical tweezer arrays. Understand how exciting atoms into Rydberg states enables interaction at distances exceeding ten micrometers, allowing for the study of magnetic properties in an ensemble of over a hundred interacting ½ spins. Explore the challenges of simulating such systems using conventional numerical methods and learn about the startup Pasqal, which emerged from aspects of this research.
Syllabus
Antoine Browaeys - "Exploring many body problems with arrays of individual atoms"
Taught by
Stanford Physics
Related Courses
Applied Quantum Computing III: Algorithm and SoftwarePurdue University via edX Introduction to Computational Materials Design
Osaka University via edX The Map of Quantum Computing - Quantum Computers Explained
Domain of Science via YouTube Towards Practical Quantum Advantage - Quantum Colloquium
Simons Institute via YouTube Quantum Computing and Simulation with Atoms
Simons Institute via YouTube