Generalized Morse Theory of Distance Functions to Surfaces for Persistent Homology
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a groundbreaking lecture that merges three distinct theories to quantify complex shape textures. Delve into the intersection of distance fields, persistent homology, and Morse theory as applied to shape representation and analysis. Learn how this innovative approach generalizes Morse theory to Euclidean distance functions of bounded sets with smooth boundaries. Discover how transversality theory is used to prove that generic embeddings of smooth compact surfaces in R3 yield signed distance functions with finitely many non-degenerate critical points. Understand the implications of this research for creating finite barcode decompositions of signed distance persistence modules, allowing for geometric classification of birth and death points. Examine practical applications of this methodology in both simulated data using the "curvatubes" model and real-world vascular data from leukaemic samples, gaining insights into how this approach can provide new biological understanding.
Syllabus
Anna Song(06/28): Generalized Morse Theory of Distance Functions to Surfaces for Persistent Homology
Taught by
Applied Algebraic Topology Network
Related Courses
Persistence Diagram Bundles- A Multidimensional Generalization of VineyardsApplied Algebraic Topology Network via YouTube Persistent Homology for Infinite Complexes - Extending Theory to Infinite CW Complexes
Applied Algebraic Topology Network via YouTube The Persistence Mayer-Vietoris Spectral Sequence
Applied Algebraic Topology Network via YouTube Edit Distance and Persistence Diagrams Over Lattices
Applied Algebraic Topology Network via YouTube An Introduction to Persistent Homology
Applied Algebraic Topology Network via YouTube