Twisted Transition Metal Dicalcogenides - Tests of Quantum Embedding and Theories
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore a 42-minute lecture on twisted transition metal dicalcogenides and their role in testing quantum embedding theories. Delve into the complexities of quantum many-body theory and the importance of comparing controlled theory with controlled experiments. Discover how these materials serve as a crucial experimental platform for studying quantum phenomena. Examine the application of dynamical mean field theory and other quantum embedding techniques in simplifying complex systems to solvable models. Learn about the Hubbard model and its relevance in explaining experimental observations. Gain insights into the challenges and limitations of current calculations, and explore future research directions in computational materials science. Understand the collaborative efforts behind this work and its support from the NSF MRSEC program through the Center for Precision-Assembled Quantum Materials.
Syllabus
Andrew Millis - Twisted Transition Metal Dicalcogenides: Tests of Quantum Embedding and Theories
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Insights on Gradient-Based Algorithms in High-Dimensional LearningSimons Institute via YouTube Spontaneous Disorder Near the Mott Transition on Frustrated Lattices
International Centre for Theoretical Sciences via YouTube Many-Body Perturbation Theory and Green's Function Methods - IPAM at UCLA
Institute for Pure & Applied Mathematics (IPAM) via YouTube Dynamical Mean-Field Theory in Non-Equilibrium Many-Body Statistical Physics - Giulio Biroli
Kavli Institute for Theoretical Physics via YouTube Matrix Product States for Real Materials
Institute for Pure & Applied Mathematics (IPAM) via YouTube