Introduction to Optimal Transportation and Monge Ampère Type Equations - Lecture 2
Offered By: ICTP Mathematics via YouTube
Course Description
Overview
Delve into the advanced mathematical concepts of optimal transportation and Monge Ampère type equations in this comprehensive lecture by G. De Philippis from Scuola Normale Superiore di Pisa, Italy. Explore key topics including the Merge problem, super differential, isoperimetric problem, parametric problem, probability measure, and eigenvalue concepts. Gain insights into the solution, definition, and proof of related theorems. Examine the intricacies of equality everywhere, constant speed maps, and variation in the context of these complex mathematical theories. This in-depth presentation is part of the School and Workshop on "Geometric Measure Theory and Optimal Transport" series, offering a rigorous exploration of cutting-edge mathematical principles.
Syllabus
Intro
Merge problem
Solution
Definition
Super differential
Theorem
Proof
Isoperimetric problem
Parametric problem
Probability measure
Eigenvalue
Equality everywhere
Map
Constant speed
Variation
Taught by
ICTP Mathematics
Related Courses
Optimal Transport and PDE - Gradient Flows in the Wasserstein MetricSimons Institute via YouTube Crash Course on Optimal Transport
Simons Institute via YouTube Learning From Ranks, Learning to Rank - Jean-Philippe Vert, Google Brain
Alan Turing Institute via YouTube Optimal Transport for Machine Learning - Gabriel Peyre, Ecole Normale Superieure
Alan Turing Institute via YouTube Regularization for Optimal Transport and Dynamic Time Warping Distances - Marco Cuturi
Alan Turing Institute via YouTube