Enhancing Scientific Computing Through Physics-Informed Neural Networks
Offered By: Alan Turing Institute via YouTube
Course Description
Overview
Explore the potential of physics-informed deep learning (PIDL) in scientific computing through this comprehensive lecture. Delve into physics-informed neural networks (PINNs) and their capabilities in addressing challenges faced by traditional computational approaches. Discover how PINNs can efficiently handle high-dimensional problems governed by parameterized partial differential equations (PDEs) and incorporate noisy data in inverse problems. Learn about extensions such as conservative PINNs (cPINNs) and eXtended PINNs (XPINNs) designed for big data and large models. Examine various adaptive activation functions that enhance convergence in deep and physics-informed neural networks. Gain insights into diverse applications where PINNs outperform traditional methods, and understand their current limitations and future potential in advancing scientific computing.
Syllabus
Ameya Jagtap Enhancing Scientific Computing Through Physics informed Neural Networks
Taught by
Alan Turing Institute
Related Courses
Scientific ComputingUniversity of Washington via Coursera Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera High Performance Scientific Computing
University of Washington via Coursera Practical Numerical Methods with Python
George Washington University via Independent Julia Scientific Programming
University of Cape Town via Coursera