Learning for Never-before-seen Biomedicine
Offered By: Paul G. Allen School via YouTube
Course Description
Overview
Explore a thought-provoking colloquium presentation by Stanford's Sheng Wang on "Learning for Never-before-seen Biomedicine." Delve into the computational challenges underlying various biomedical problems, including COVID-19, cancer early identification, and drug side effects. Discover novel machine learning methods developed to tackle two types of never-before-seen situations: never-before-seen class and never-before-seen cohort. Learn how large-scale biomedical ontologies are embedded to classify samples into new classes, leading to discoveries in protein functions, cell types, and rare diseases. Understand the innovative approach of using a multiscale biomedical knowledge graph, constructed from millions of scientific papers and experimental associations, to characterize never-before-seen cohorts. Gain insights into future directions for never-before-seen biomedicine and the importance of cross-disciplinary collaboration in computer science fields such as robotics, security, human-computer interaction, computational design, and ubiquitous computing.
Syllabus
Allen School Colloquium: Sheng Wang (Stanford)
Taught by
Paul G. Allen School
Related Courses
Synapses, Neurons and BrainsHebrew University of Jerusalem via Coursera Моделирование биологических молекул на GPU (Biomolecular modeling on GPU)
Moscow Institute of Physics and Technology via Coursera Bioinformatics Algorithms (Part 2)
University of California, San Diego via Coursera Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera Neuronal Dynamics
École Polytechnique Fédérale de Lausanne via edX