Algorithms and Hardness for Attention and Kernel Density Estimation
Offered By: Google TechTalks via YouTube
Course Description
Overview
Explore the computational challenges and algorithmic solutions for Attention in Large Language Models and Kernel Density Estimation in this Google TechTalk presented by Josh Alman. Dive into the quadratic-time algorithms for both problems and discover recent advancements in achieving almost linear-time performance through techniques like the Fast Multipole Method and the polynomial method. Examine fine-grained hardness results that demonstrate the optimality of these approaches in specific parameter regimes, while identifying potential areas for improvement. Learn about the speaker's collaborative research efforts and gain insights into the intersection of algorithm design, complexity theory, and algebraic tools for enhancing algorithmic efficiency.
Syllabus
Algorithms and Hardness for Attention and Kernel Density Estimation
Taught by
Google TechTalks
Related Courses
Sequence ModelsDeepLearning.AI via Coursera Modern Natural Language Processing in Python
Udemy Stanford Seminar - Transformers in Language: The Development of GPT Models Including GPT-3
Stanford University via YouTube Long Form Question Answering in Haystack
James Briggs via YouTube Spotify's Podcast Search Explained
James Briggs via YouTube