Algorithmic Fairness in Predicting Opioid Use Disorder using Machine Learning
Offered By: Association for Computing Machinery (ACM) via YouTube
Course Description
Overview
Explore a 20-minute conference talk from the FAccT 2021 virtual event that delves into the critical issue of algorithmic fairness in predicting Opioid Use Disorder through machine learning techniques. Presented by A. Kilby as part of the Research Track, this talk examines the intersection of artificial intelligence, healthcare, and ethical considerations. Gain insights into the challenges and potential solutions for developing fair and unbiased algorithms in the context of addressing the opioid crisis. Learn about the implications of machine learning models in healthcare decision-making and the importance of ensuring equitable outcomes across diverse populations. Discover how researchers are working to mitigate disparities and improve the accuracy and fairness of predictive models for Opioid Use Disorder.
Syllabus
Algorithmic Fairness in Predicting Opioid Use Disorder using Machine Learning
Taught by
ACM FAccT Conference
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent