Algebraic Coding Problems From Quantum Fault-Tolerance
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a 31-minute lecture on algebraic coding problems in quantum fault-tolerance presented by Narayanan Rengaswamy from the University of Arizona. Delve into the critical balance between efficient error decoding and fault-tolerant operations on encoded qubits in quantum error correction. Examine the advantages of sparse factor graph codes for error decoding and algebraic codes for fault-tolerant operations. Learn about the necessity of fault-tolerantly realizing Clifford gates and at least one non-Clifford logical gate for universal quantum computation. Investigate the process of magic state distillation and injection, understanding the specific code properties required for fault-tolerance. Compare and contrast the suitability of algebraic codes and sparse graph codes for different quantum computing tasks. Conclude by exploring an open problem connecting sparse graphs with algebraic codes and its potential impact on the field of quantum fault-tolerance.
Syllabus
Algebraic Coding Problems From Quantum Fault-Tolerance
Taught by
Simons Institute
Related Courses
Intro to Computer ScienceUniversity of Virginia via Udacity Quantum Mechanics for IT/NT/BT
Korea University via Open Education by Blackboard Emergent Phenomena in Science and Everyday Life
University of California, Irvine via Coursera Quantum Information and Computing
Indian Institute of Technology Bombay via Swayam Quantum Computing
Indian Institute of Technology Kanpur via Swayam