Functional Inequalities in Metric Geometry - Lecture 3
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore a comprehensive lecture on functional inequalities in metric geometry, focusing on their role as invariants in bi-Lipschitz embeddings of finite graphs into Banach and metric spaces. Delve into various discrete functional inequalities, including nonlinear versions of type and cotype, Markov convexity, diamond convexity, and the nonlinear spectral gap inequality. Discover how these invariants lead to nonembeddability results for important graph structures such as the Hamming cube, l∞-grids, trees, diamond graphs, and expanders. Gain valuable insights into the intersection of functional analysis, metric geometry, and graph theory through this in-depth presentation by Alexandros Eskenazis at the Hausdorff Center for Mathematics.
Syllabus
Alexandros Eskenazis: Functional inequalities in Metric Geometry III
Taught by
Hausdorff Center for Mathematics
Related Courses
Aplicaciones de la teoría de grafos a la vida realMiríadax Aplicaciones de la Teoría de Grafos a la vida real
Universitat Politècnica de València via UPV [X] Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX Genome Sequencing (Bioinformatics II)
University of California, San Diego via Coursera Algorithmic Information Dynamics: From Networks to Cells
Santa Fe Institute via Complexity Explorer