YoVDO

Quantum Approximate Optimization Algorithm and Local Max-Cut - IPAM at UCLA

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Quantum Computing Courses Optimization Algorithms Courses Numerical Linear Algebra Courses

Course Description

Overview

Explore the application of Quantum Approximate Optimization Algorithm (QAOA) to local variants of classical NP-hard problems in this 28-minute conference talk by Alexandra Kolla from the University of California, Santa Cruz. Delve into the study of QAOA on local problems, focusing on LocalMaxCut as a potential area where quantum algorithms might outperform classical ones. Examine preliminary results suggesting that quantum supremacy may be achievable on complex graphs, while local algorithms still outperform QAOA on simple graph instances. Gain insights into the motivation behind this research, the methodology used, and future directions in the field of quantum numerical linear algebra.

Syllabus

Intro
Motivation
QAOA
Local MaxCut
Results


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Deep Learning for Natural Language Processing
University of Oxford via Independent
Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization
DeepLearning.AI via Coursera
Deep Learning Part 1 (IITM)
Indian Institute of Technology Madras via Swayam
Deep Learning - Part 1
Indian Institute of Technology, Ropar via Swayam
Logistic Regression with Python and Numpy
Coursera Project Network via Coursera