YoVDO

Dimers and M-curves: Limit Shapes from Riemann Surfaces

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Mathematics Courses Conformal Mappings Courses Statistical Mechanics Courses Algebraic Geometry Courses Riemann Surfaces Courses Hyperbolic Geometry Courses Integrable Systems Courses Dimer Model Courses Discrete Geometry Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive lecture on dimer models and M-curves presented by Alexander Bobenko from Technische Universität Berlin at IPAM's Statistical Mechanics and Discrete Geometry Workshop. Delve into a general approach to dimer models analogous to Krichever's scheme in integrable systems theory, leading to models on doubly periodic bipartite graphs with quasiperiodic positive weights. Discover how this generalization from Harnack curves to M-curves reveals transparent algebro-geometric structures, with the Ronkin function and surface tension expressed as integrals of meromorphic differentials. Examine explicit representations for limit shapes in terms of Abelian integrals, and understand the connection to discrete conformal mappings and hyperbolic polyhedra. Learn about the application of Schottky uniformization of Riemann surfaces in computing weights and dimer configurations, with computational results aligning with theoretical predictions.

Syllabus

Alexander Bobenko - Dimers and M-curves: Limit shapes from Riemann surfaces - IPAM at UCLA


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Statistical Mechanics: Algorithms and Computations
École normale supérieure via Coursera
Physics of Materials
Indian Institute of Technology Madras via Swayam
From Atoms to Materials: Predictive Theory and Simulations
Purdue University via edX
Statistical Mechanics
Indian Institute of Technology Madras via Swayam
Thermodynamics: Classical To Statistical
Indian Institute of Technology Guwahati via Swayam