YoVDO

Adaptive Sampling via Sequential Decision Making - András György

Offered By: Alan Turing Institute via YouTube

Tags

Sequential Decision Making Courses Statistics & Probability Courses Machine Learning Courses Probability Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore adaptive sampling techniques through sequential decision-making in this 59-minute lecture by András György from the Alan Turing Institute. Delve into the theoretical foundations of learning, focusing on methods that intersect statistics, probability, and optimization. Discover how multi-armed bandit algorithms can be applied to select unbiased Monte Carlo samplers sequentially, aiming to minimize mean-squared error. Examine the challenges of extending this approach to Markov-chain Monte Carlo (MCMC) samplers, including proper sample quality measurement and handling of slowly mixing chains and multimodal target distributions. Learn about an asymptotically consistent adaptive MCMC algorithm that can significantly accelerate sampling, particularly for multimodal target distributions. Gain insights from experimental results demonstrating the algorithm's effectiveness in various scenarios.

Syllabus

Adaptive Sampling via Sequential Decision Making - András György


Taught by

Alan Turing Institute

Related Courses

Advanced Statistics for Data Science
Johns Hopkins University via Coursera
AI and Machine Learning Essentials with Python
University of Pennsylvania via Coursera
An Introduction to Machine Learning in Quantitative Finance
University College London via FutureLearn
Calculus: Single Variable Part 4 - Applications
University of Pennsylvania via Coursera
Preparing for the AP* Statistics Exam
University of Houston System via Coursera