YoVDO

A Tutorial on Causal Representation Learning

Offered By: Valence Labs via YouTube

Tags

Causality Courses Artificial Intelligence Courses Machine Learning Courses Drug Discovery Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the emerging field of Causal Representation Learning (CRL) in this comprehensive tutorial. Delve into the core technical problems and assumptions driving CRL, which aims to learn causal models and mechanisms from low-level observations like text, images, or biological measurements. Gain strong intuitions about the challenges of nonlinearity and the necessity of assumptions in causal representations. Discover various learning signals, including time contrastive learning, tree-based regularization, and sparse mechanisms. Examine the potential applications of CRL in scientific discovery and AI development. Conclude with a discussion on open questions and future directions for this exciting area of research.

Syllabus

- Intro
- How we got here
- What would it take to build an AI bench scientist
- The setup
- The challenge of nonlinearity
- No causal representations without assumptions
- Time contrastive learning
- Switchover: Dhanya Sridhar
- What other learning signals can we use?
- Tree-based regularization
- Sparse mechanisms
- Multiple views and sparsity
- Concluding questions


Taught by

Valence Labs

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent