A Tropical Approach to Homological Mirror Symmetry of Quadrics
Offered By: IMSA via YouTube
Course Description
Overview
Explore a tropical geometry approach to homological mirror symmetry of quadrics in this lecture by Gabriel Kerr from Kansas State University. Delve into the history of mirror potential descriptions for quadrics, from Hori and Vafa to more recent works. Examine a novel method using a different anti-canonical divisor and tropical geometry. Investigate the connection between Kapranov's exceptional collection of sheaves and the potential's natural exceptional collection. Focus on the two-dimensional quadric case, highlighting its unique characteristics compared to toric examples. Gain insights into this collaborative research with Reginald Anderson and Yijia Liu, covering topics such as geometric construction, quadric construction, general principles, torus charts, and FQ.
Syllabus
Introduction
Geometry Papers
History
Geometric Construction
Quadric Construction
General Principles
The Union
The Baby Example
Torus Charts
Geometry
FQ
Taught by
IMSA
Related Courses
Mirror Symmetry for Young Students - Elementary Mathematics ExplainedInsights into Mathematics via YouTube Gauge Theory and the Analytic Approach to Geometric Langlands - Edward Witten
Institute for Advanced Study via YouTube Out of the Closet and Into the Mirror
Fields Institute via YouTube Mirror Symmetry for Character Varieties and Field Theory by Sergey Galkin
International Centre for Theoretical Sciences via YouTube Tamas Hausel - Enhanced Mirror Symmetry for Langlands Dual Hitchin Systems
International Mathematical Union via YouTube