A Polynomial-Time Classical Algorithm for Noisy Random Circuit Sampling
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a comprehensive quantum colloquium lecture on the development of a polynomial-time classical algorithm for noisy random circuit sampling. Delve into the intricacies of quantum random circuit sampling (RCS) and its role in recent "quantum supremacy" experiments. Examine the computational complexity of RCS and learn about a groundbreaking polynomial-time classical algorithm for sampling from noisy random quantum circuits. Understand the implications of this algorithm on the scalability of experimental violations of the extended Church-Turing thesis. Gain insights into the theoretical aspects of the algorithm, including its running time and scaling properties. Investigate recent progress in the field, practical challenges, and power arguments. Participate in a panel discussion featuring experts in quantum computing, exploring the broader implications and future directions of this research.
Syllabus
Introduction
Background
Outline
Motivation
Experimental Model
Results
Theorem
Running Time
Scaling of M
Theta Log in Depth
Ideal RCs
High Noise
XClass
Summary
Recent Progress
Practical Challenges
Power Arguments
Polypass Integral
Efficient Enumeration
Discussion
Conclusions
Questions
Panel
Taught by
Simons Institute
Related Courses
Automata TheoryStanford University via edX Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX 算法设计与分析 Design and Analysis of Algorithms
Peking University via Coursera How to Win Coding Competitions: Secrets of Champions
ITMO University via edX Introdução à Ciência da Computação com Python Parte 2
Universidade de São Paulo via Coursera