A Guide to Cross-Validation for AI - Avoiding Overfitting and Ensuring Generalizability
Offered By: Molecular Imaging & Therapy via YouTube
Course Description
Overview
Explore cross-validation techniques for AI in this comprehensive 49-minute video lecture by Dr. Tyler Bradshaw from Molecular Imaging & Therapy. Delve into the concepts of overfitting and generalizability, and learn about the pitfalls of using one-time split methods. Understand the importance of representative test sets and avoiding tuning to the test set. Discover various cross-validation approaches, including K-fold with folded and hold-out test sets, nested cross-validation, leave-one-out, and random sampling. Gain insights on selecting the most appropriate approach by weighing their pros and cons. The lecture concludes with final thoughts and references a paper for further study, providing a solid foundation for implementing effective cross-validation techniques in AI projects.
Syllabus
Introduction
Overfitting vs. generalizability
Pitfalls of using one-time split method
Pitfall #1: Non-representative test set
Pitfall #2: Tuning to the test set
Cross-validation
Important note: in CV we are testing pipeline, not a single model
K-fold, folded test set
K-fold, hold-out test-set
Nested cross-validation
leave-one-out
random sampling
selecting an approach: pros and cons
Final thoughts
Taught by
Molecular Imaging & Therapy
Related Courses
How to Win a Data Science Competition: Learn from Top KagglersHigher School of Economics via Coursera Data Science: Machine Learning
Harvard University via edX Visual Machine Learning with Yellowbrick
Coursera Project Network via Coursera Regression Analysis with Yellowbrick
Coursera Project Network via Coursera Support Vector Machines in Python, From Start to Finish
Coursera Project Network via Coursera